Muscle work is increased in pre-swing during hemiparetic walking.

نویسندگان

  • Carrie L Peterson
  • Steven A Kautz
  • Richard R Neptune
چکیده

BACKGROUND Muscle mechanical work is likely affected by gait abnormalities in hemiparetic walking during the paretic pre-swing phase (i.e., double support phase preceding paretic toe-off). Previous experimental studies suggest that muscle work may be decreased in the paretic leg, but paretic work may have been underestimated since experimental approaches based on net joint moments do not account for co-contraction of antagonist muscles. Also, whether the non-paretic leg does more work compared to control subjects at matched speeds and how work generation may differ between hemiparetic subjects walking with different self-selected speeds remains unknown. METHODS Three-dimensional forward dynamics simulations of two representative hemiparetic subjects walking with different self-selected speeds (i.e., limited community=0.45 m/s and community walkers=0.9 m/s) and a speed and age-matched control subject were generated to quantify musculotendon (fiber and in-series tendon) work during paretic pre-swing. FINDINGS Total paretic and non-paretic fiber work were increased in both the limited community and community hemiparetic walkers compared to the control. Increased fiber work in the limited community walker was primarily related to decreased fiber and tendon work by the paretic plantar flexors requiring compensatory work by other muscles. Increased fiber work in the community walker was primarily related to increased work by the hip abductors and adductors. INTERPRETATION The hemiparetic walkers would expend more metabolic energy during pre-swing if the hemiparetic and control subjects were to perform work with the same mechanical efficiency. These results may partly explain the increased metabolic cost of hemiparetic walkers compared to nondisabled walkers at matched speeds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking.

Clinical studies of hemiparetic walking have shown pre-swing abnormalities in the paretic leg suggesting that paretic muscle contributions to important biomechanical walking subtasks are different than those of non-disabled individuals. Three-dimensional forward dynamics simulations of two representative hemiparetic subjects with different levels of walking function classified by self-selected ...

متن کامل

Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke.

Gait variability is suggested to be a quantifiable measure to evaluate mobility impairments. However, it is unknown whether gait variability could be used as a marker of impaired walking performance post-stroke. Therefore, the purpose of this study was to determine whether gait variability measures could be used as walking performance measures post-stroke. Hemiparetic variability was compared t...

متن کامل

The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.

BACKGROUND Post-stroke subjects with hemiparesis typically utilize a reduced number of modules or co-excited muscles compared to non-impaired controls, with at least one module resembling the merging of two or more non-impaired modules. In non-impaired walking, each module has distinct contributions to important biomechanical functions, and thus different merged module combinations post-stroke ...

متن کامل

Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis.

BACKGROUND Persons with post-stroke hemiparesis usually walk slowly and asymmetrically. Stroke severity and functional walking status are commonly predicted by post-stroke walking speed. The mechanisms that limit walking speed, and by extension functional walking status, need to be understood to improve post-stroke rehabilitation methods. METHODS Three-dimensional forward dynamics walking sim...

متن کامل

Comparison of Module Quality and Walking Performance of Hemiparetic Subjects Pre and Post Locomotor Rehabilitation Therapy

In healthy subjects, electromyography (EMG) reveals that well-coordinated walking can be produced by exciting four co-activation modules: Module 1 (hip and knee extensors) in early stance, Module 2 (ankle plantarflexors) in late stance, Module 3 (tibialis anterior and rectus femoris) during swing, and Module 4 (hamstrings) in late swing and early stance [1]. These modules, comprised of timing a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical biomechanics

دوره 26 8  شماره 

صفحات  -

تاریخ انتشار 2011